求解奥数 页码问题

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 02:16:37
求解奥数 页码问题

求解奥数 页码问题
求解奥数 页码问题

求解奥数 页码问题
例1、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?
这是一个关于循环小数的周期问题.基本解答方法是先算出循环节,然后再统计每个周期的数字总数和每个周期中6的个数.
13/1995=0.0065162907268170426……,循环节是065162907268170426共18位,
每个循环节数字6出现4次,(1995-1)÷18=110……14,前14位6出现3次,
所以一共有110×4+3=443个.
例2、有一本96页的书,中间缺了一张.如果将残书的所有页码相加,那么可能得到偶数吗?
假设可能得到偶数,那么计算如下:
如果这本书不缺页,则总96页的所有页码之和是:1+...+96=4656.
由于书中的每一页都包括连续的一个奇数和一个偶数,所以每一页上的页码之和必定是奇数.那么:
残书页码和=4656(偶数)-奇数(一页上的两面页码之和)=奇数
综上所述:不可能得到偶数.
例3、将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第1000位上的数字是多少?
9页每页上的页码是一位数,共需数码1×9=9(个);
  10~99页每页上的页码是两位数,共需数码2×90=180(个);
因为(1000-189)÷3=270……1,所以1000个数码排到第:
99+270+1=370(个)数的第1个数码“3”.
所以本题的第1000位数是3.
例4、有一本科幻故事书,每四页中,有一页为文字,其余三页为图画.如果第一页为图画,那么第二、三页也是图画,第四页为文字,第五、六、七页又为图画,依此类推.如果第一页为文字,那么第二、三、四页为图画,第五页为文字,第六、七、八页又为图画,依此类推.试问:
  (1)假如这本书有96页,且第一页是图画,那么这本书多少页有图画?
  (2)假如这本书有99页,那么多少页有图画?
(1)将每4页看作是一组,每一组中有3页是图画:96÷4=24
24×3=72(页)
这本书有72页是图画.
(2)99÷4=24…3
24×3+3=75(页)
例1 一本书共204页,需多少个数码编页码?
9页每页上的页码是一位数,共需数码
1×9=9(个);
10~99页每页上的页码是两位数,共需数码
2×90=180(个);
100~204页每页上的页码是三位数,共需数码
(204-100+1)×3=105×3=315(个).
综上所述,这本书共需数码
9+180+315=504(个).
例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?
分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有 (2211-189)÷3=674(页).
因为不到三位的页数有99页,所以这本书共有:99+674=773(页).
99+(2211-189)÷3=773(页).
答:这本书共有773页.
例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?
因为这本书的页码从1至62,所以这本书的全书页码之和为
1+2+…+61+62
=62×(62+1)÷2
=31×63
=1953.
由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是
2000-1953=47.
例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?
48页书的所有页码数之和为
1+2+…+48
=48×(48+1)÷2
=1176.
按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.
例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?
本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.
例6 排一本400页的书的页码,共需要多少个数码“0”?
将1~400分为四组:
100,101~200,201~300,301~400.
在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”
典型例题: